天才小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

=946. 数日后,我找到他(即945中提到的同一位精算师),一本正经地告诉他我在他极为推崇的《卡莱尔生命表》中发现了人类死亡率规律。我解释道,规律藏在这样的现象里:取期望寿命表中任意年龄,将其期望寿命取整为新年龄,重复此操作,无论从何年龄开始,最终必然会停在已过年龄等于(或最接近)剩余期望寿命的位置。他问:“你是说这总能成立?”我让他尝试验证。他反复试验后发现确实如我所言,惊叹道:“这太神奇了!这真是个重大发现!”我本可让他去宣扬所谓“生命定律”,但最终只告诉他:“只要表格中第一列递增、第二列递减,任何表格都会出现这种情况……”

——奥古斯特·德摩根《悖论汇编》(伦敦,1872),第172页。

越数日,余往见前之精算师,正色告之,言于其素所推重之《卡莱尔生命表》中,得人类死亡率规律。乃解之曰:取生命期望之表,任择一岁数,以其期望之数取整为新岁,复循此例。无论自何岁数始,终必至于已历之岁与未历之期望岁等,或极为相近之处。精算师问:“汝言此皆验乎?”余促其试之。彼屡试不爽,叹曰:“此诚异事!真乃一大发现!”余本可使其宣扬此“生命之律”,然仅告之曰:“但凡表中首列递增,次列递减,皆有此象……”

——奥古斯特·德摩根《悖论汇编》(伦敦,1872),页一百七十二 。

=947. [德摩根提到,有个人用他的名字编了800句变位词,其中他见过的约有650句。对此他评论道:]

其中两句被我合并用作扉页题词:

[拉丁语:Ut agendo surgamus arguendo gustamus.]

(意为让我们通过行动崛起,通过辩论品味)

其他变位词中有几句是针对我个人的调侃。

Great gun! do us a sum!

(了不起的天才!给我们算道题!)

这是在嘲讽我的学术追求;而更庄重的版本是:

Go! great sum! |∫u? a du|

(去吧!伟大的积分!|∫u? a du|)

Adsum, nugator, suge!

(我在此,蠢材,闭嘴!)

这是对讲座开始后仍喋喋不休的学生的训斥......

Graduatus sum! nego

(我已毕业!我拒绝)

则适用于那个拒绝订阅文学硕士学位的人。

——奥古斯特·德摩根《悖论汇编》(伦敦,1872),第82页。

[德摩根氏尝记:有好事者以其名制廋辞八百,所见者约六百五十。其评曰:]

此中二联,余合为扉页题辞:

「勤行以振,辩道而味。」

余者多戏谑之语。

「大才!速与吾算!」乃讥余治学之癖;

「去!妙积!∫u? a du」则稍庄矣......

「吾在矣,妄人,噤声!」

此训讲筵既启犹喋喋之徒也......

「吾业已成!弗应」

则指彼辞购文硕士之牒者。

——奥古斯特·德摩根《悖论汇编》(伦敦,1872),第82页。

=948. 笛卡尔是历史上最典型的纯数学型心智代表——在其思维中,数学训练塑造的倾向占据绝对主导且不受制衡。

——J.S.密尔《对威廉·汉密尔顿爵士哲学的考察》(伦敦,1878),第626页。

笛卡尔者,史载纯数学心智之典范也。其思维之中,数学涵养所成之趋向,独擅胜场,莫能制衡。

——J.S.密尔《对威廉·汉密尔顿爵士哲学的考察》(伦敦,1878),页六百二十六 。

=949. 17世纪伟大哲学家笛卡尔的不朽功绩在于:他破除了此前长期笼罩在几何学上的禁锢。笛卡尔的“解析几何”方法迅速催生大量新定理与原理,其成就远超古人在传统路径上所能达到的极限。

——h.汉克尔《近几个世纪的数学发展》(图宾根,1884),第10页。

笛卡尔,十七世纪之大哲也,其功甚伟,破几何久被禁锢之局。其所创 “解析几何” 之法,未几,新理、新论纷出,远超古人所及,诚可谓功在千古。

——h.汉克尔《近几个世纪的数学发展》(图宾根,1884),页十

=950.= [代数的应用]远比他的任何形而上学思辨更能使笛卡尔的名字永垂不朽,并构成了精密科学发展史上最伟大的单一步骤。——约翰·斯图尔特·密尔《对威廉·汉密尔顿爵士哲学的考察》(伦敦,1878年),第617页

代数之用,远迈其玄思冥悟,笛氏之名由是不朽,实为格致之学亘古未有之大进。 ——密尔《汉密尔顿爵士哲学考》(伦敦,1878)页六百一十七

=951.= ……据说托勒密曾问欧几里得,学习几何是否有比研读《几何原本》更快捷的途径。他回答道:几何无坦途。——普罗克洛斯

(弗里德莱因编订版,1873年),序论卷二,第39页

或云托勒密王尝问欧几里得:习几何者,岂无捷径于《原本》乎?对曰:几何之道,无王路可循。 ——普罗克洛斯《几何原本注》(弗里德林编,1873)序卷二章三十九

=952.= 有人开始跟欧几里得学几何,刚学完第一个命题就问:学这些东西我能得到什么?欧几里得便唤来仆人说:给他三便士,因为他总要从所学里获取利益。——斯托拜乌斯

(瓦克斯穆特编订版,1884年),《文萃》卷二

昔人从欧公习几何,始证第一题,即问:习此将何所得?欧公遂召其仆曰:赐之三钱,盖其学必求利也。 ——斯托拜乌斯《文选》(瓦克斯穆特编,1884)卷二

=953.= 除宗教经典外,没有哪位希腊人的着作能像欧几里得作品这般被广泛阅读并有多种译本。——奥古斯塔斯·德摩根

《希腊罗马传记与神话辞典》(伦敦,1902年),欧几里得词条

[注5] 里卡迪的《欧几里得文献目录》(博洛尼亚,1887年)收录了近两千个版本。

自圣典而外,希腊之书未有若欧几里得之作传诵广远、译解纷繁者也。 ——德摩根《希腊罗马列传》(伦敦,1902)欧几里得条

=954.= 欧几里得的十三卷《几何原本》必定是巨大的飞跃,其意义或许更胜牛顿的《自然哲学的数学原理》。——奥古斯塔斯·德摩根 《希腊罗马传记与神话辞典》(伦敦,1902年),欧几里得词条

欧氏十三卷,厥功至钜,虽牛顿《算理》或有不逮。 ——德摩根《希腊罗马列传》(伦敦,1902)欧几里得条

=955.= 若认为欧几里得《几何原本》这般完美的体系是由一人独立完成,既无前例可循又无材料可依,那便是将欧几里得视若超人了。若我们承认:前人创造的几何成果不仅被他大幅推进,更被整合成如此精妙的体系——其着作令前人的所有成果黯然失色直至湮没无闻——这已是人类理解力所能允许我们对他的最高赞誉。——托马斯·里德 《人类心智能力论》(爱丁堡,1812年),第2卷,第368页

夫谓《原本》之精微尽出一人之手,无复凭藉,是谓欧氏非常人也。今观其书,网罗前代算术,恢而弥广,整以成章,遂使往籍湮没,其功可谓极人智之能事矣。 ——里德《人心能力论》(爱丁堡,1812)卷二页三百六十八

=956.= 伟大的巴塞尔数学家莱昂哈德·欧拉的不可磨灭的功绩,在于他将分析学从几何的束缚中彻底解放,使之成为独立学科。自他之后,分析学始终占据数学领域的绝对主导地位。——赫尔曼·汉克尔 《近世纪数学发展》(蒂宾根,1884年),第12页

巴塞尔大贤欧拉公,脱解析于形数之缚,别立门户,自是以降,执算学之牛耳,莫之与京。 ——汉克尔《近世算学志》(蒂宾根,1884)页十二

=957.= 我们可以肯定地说,现代数学思维的整体形式是由欧拉塑造的。阅读欧拉之前任何作者的着作都极为困难,因为当时人们尚未学会让公式自己说话。这门艺术正是欧拉首创并传授的。——F·鲁迪奥 引自阿伦斯《数学中的幽默与严肃》(莱比锡,1904年),第251页

今之算学体例,实欧拉所创。观前贤之作,每苦艰涩,盖未达以式代言之妙。此道自欧拉始彰。 ——鲁迪奥《算学谈趣》(莱比锡,1904)页二百五十一

=958.= 我们的作者[莱昂哈德·欧拉]的渊博学识远超常人想象——对于如此痴迷数学与天文学研究的人而言更是难得。他在医学、植物学和化学领域均有深厚造诣。更非凡的是,他堪称卓越学者,具备世人所谓的最高素养。他精研古罗马经典作家,熟知各时代各国的文明与文学史。那些仅通过着作了解他的外国学者,发现这位毕生投身数理研究的智者竟在交谈中展现出对人文领域最精妙分支的深刻见解时,无不为之惊叹。在这方面,他无疑受益于过人的记忆力——无论是阅读所得还是沉思所悟,都能被这记忆精准留存。——查尔斯·赫顿《哲学与数学辞典》(伦敦,1815年),第493-494页

欧拉先生之学,浩乎无涯。虽毕生覃思于天算,而医卜农圃之术,靡不洞彻。尤异者,经史子集,过目成诵,四方之士但知其精于数术者,闻其谈吐渊博,莫不惊为天人。盖其强记默识,凡披览所及,沉思所得,终身不忘也。 ——赫顿《格致辞典》(伦敦,1815)页四百九十三

959. 欧拉能从头至尾背诵《埃涅阿斯纪》,甚至能说出他所用版本中每一页的首尾行。在他的一部着作里,有一篇关于力学问题的学术回忆录,正如他自己所述,《埃涅阿斯纪》中的一句诗[6]让他萌生了最初的想法。

——大卫·布鲁斯特《欧拉书信集》(纽约,1872),第一卷,第24页

[6] 此处提及的诗句是:“锚抛下,疾驰的龙骨停驻。”

欧拉能通篇诵《埃涅阿斯纪》,所用版本每页首尾之句,皆烂熟于心。其着作中,有力学专论,据其自述,乃因《埃涅阿斯纪》中一句“锚抛下,疾驰之龙骨停驻”,得灵感而作。

——大卫·布鲁斯特《欧拉书信集》(纽约,1872),卷一,页二十四

960. 他(欧拉)的大部分论文收录在圣彼得堡科学院和柏林科学院的学报中。从1728年到1783年,《彼得堡科学院学报》的大量篇幅都被他的着作占据。他曾承诺向圣彼得堡科学院提供足够多的论文,以丰富其二十年的学报内容——而他兑现的承诺远超于此,因为直到1818年(欧拉于1793年去世),这些卷册中通常仍包含至少一篇他的论文。据说,欧拉的全集若出版,将厚达16,000页四开纸。

——F. 卡乔里

《数学史》(纽约,1897),第253-254页

欧拉之论着,多载于圣彼得堡与柏林科学院文录。自1728至1783年,《彼得堡科学院录》大半为其文章所占。欧拉曾许圣彼得堡科学院,供文若干,足使院录二十年增色。然其践诺逾约,至1818年(欧拉卒于1793年),诸卷犹常见其文。或言,若辑欧拉全集,当盈16,000四开之页。

——F. 卡乔里《数学史》(纽约,1897),页二百五十三至二百五十四

961. 几乎无需隐喻,更无夸张地说,欧拉堪称“分析学的化身”。

——阿拉戈《着作集》,第二卷(1854),第433页

欧拉者,堪称“析理之化身”,此言非隐喻,亦无夸饰。

——阿拉戈《着作集》,卷二(1854),页四百三十三

962. 欧拉的计算如同常人呼吸、雄鹰翱翔般毫不费力。

——阿拉戈《着作集》,第二卷(1854),第133页

欧拉演算,如人呼吸、鹰翔天际,举重若轻。

——阿拉戈《着作集》,卷二(1854),页一百三十三

天才小说推荐阅读:火影:我春野樱会算命!王爷太妖孽:腹黑世子妃重生穿越,渣男放养改造法医毒妃凤爷,您家小龙鲛又带崽出逃了失忆后我发现自己在柯学世界维京:北欧悍妇猎户家的神医小娘子病态!疯批!s级们都爱观察员青丘天狐执念之权谋与邪炁星穹铁道,开局直砸饮月君双绝皇后清妍传寻仙长春宫她总调戏我一些关于渡魂的诡异传说穿越符文之地找老婆从回94年代黑化鸣人的演技派人生四季无常偷窥发现高冷校草的另一面恶魂觉醒后,全宗门哭着求我原谅锦上添香撞鬼实录之灵异科穿书七十年代之我以我手绣我心快穿之我的复仇计划在惊悚世界努力还贷款原神:吹回起点的风林海边和陈心的爱情故事斗极品,勇摘金,重生八零不做娇妻规则怪谈:我本疯批,何惧诡异清纯男朋友,婚后竟然成了魅龙云海修仙家族传你们现代人精神还好吗?替身后她成了霸总白月光重生在末世堡垒里吃香喝辣盗墓之欠债还钱转生约:修仙徒弟家的神女师尊机械战士惜花芷护夏一世穿越之逆袭侯门千金快穿反派辅助系统竟然是恋爱番?打倒系统!亲吻我的小怪物奥特之星我欲修仙,奈何无灵根,点背!神医娇妻:摄政王的心尖宠快穿:抱歉男主,你老婆是我的了转生到仙界后,我创飞了大宗门细腰美人重生后,被禁欲太子狂宠重生后我靠创业征服校霸
天才小说搜藏榜:情陷女上司渣夫软饭硬吃,那就送他去归西末法我混成了茅山老祖黑化鸣人的演技派人生我竟是异界的大反派?征服王:塔尔塔洛斯嫡姐逼我做侧房,重生二嫁上龙床穿书七零,小作精嫁给男主他叔啦中元纪一个逗逼的成长历程贵族学院,少爷们吻了上来元素光魔法师重生末日后小撩精每天都在要贴贴重生之双面厨娘遇冷面秦王魔头郡主的摆烂日常工厂通古代,我暴富养出千古一帝重生七零:撩拨最野坏分子赢麻了血色京都坠入仙道从乱葬岗爬出,我嘎嘎杀疯了美强惨上神:娇妻大我两万岁B城爱情霸总前妻带球跑失败了梵极魔尊乱刀砍死!重生回宫嫁首辅,夫家悔哭了崩坏:破晓的征程综影视景甜甜的穿越之旅侠岚:开局废物的我居然是双属性诸天抽奖:从一人开始清穿爆改胤礽,太子妃一心搞基建光之国盘点之你那眼泪算什么1995,我终结乔丹兽世豆芽菜又强抢兽夫啦!仙踪难觅天才的吃瓜修仙日常半个纸人也能干翻全场星辰之约:时光之舟的冒险糖炒年糕大叔溺宠小可怜妃来居上七零,我在城里吃瓜看戏一家三口带厨房穿越六零年代杂言诗集疯批霸总读我心后,被他按墙索吻苍碧大陆诡秘怪谈帝姬她又要暴走了第一邪师归港有雨八零沪市:和冷面军爷的风月官司神秘总裁的心尖宠
天才小说最新小说:救命!我的手机被英桀占领了!四合院里的重生小木匠快穿单元故事:生来被爱的她六瓣菩提心小满春生东风送入京陵城灵视照相馆修真者必须死我在塞罕坝有个家我在异世开创仙道双空间在手,七零种田囤粮忙穿成高芳芳,侯亮平你别作妖镇魂街:我的守护灵是玉皇大帝霍格沃兹:我的加点没有上限独宠我的小助理胭脂判老婆香香软软,我超爱高考落榜,我成了出马仙许二的熙宝米游战锤,40K时代我有一剑可藏锋末世大佬重生成雄虫后师尊清冷又傲娇!直接拐来当娘子快穿之心碎人士收留处灵气复苏:我传承仙尊修为百倍返魔法世界的错位恋曲怀孕后,前任们都吻了上来末世重生之1962绝密档案八剑诀回京后,我成了团宠!她在无限游戏里谈恋爱全民信徒?拼爹我包赢的好吧传说之下,重叠的决心网王:当网球与心跳同频气球上的诡异眼珠太极火种小马国女孩:我的同居是海妖!人在镇妖司:杀伐证道救命!这个乙游副本怎么比高数难你喜欢我?你疯了吗?我,真的是始源吗?重生七零,我在京市开饭店致富七零,我的目标是气死绿茶养女三角洲:开局被麦晓雯捡回家宝可梦:从矿工开始的沙暴之王我的剑首女友从崩铁来莫里亚蒂即将降临他忠诚的米花町历史上消失千年的最强王朝在帝都的那些日子轨途惊魂